Abstract

Transmission electron microscopy (TEM) is one of the most important methods for the morphological characterization and structure analysis of nanomaterials. However, the characterization of magnetic materials has always been a challenge due to limitations arising from the design of electron microscopes. To tackle this problem, advanced sample preparation technology is needed, especially for magnetic materials. Here in this work ultrathin sectioning technology (ultramicrotomy) is used for the sample preparation of magnetic Fe3O4 nanoparticles embedded into a resin, where the loaded resin can be sliced into nanoscale sheets. By the optimization of the embedding method and the slicing process, nano-sheets with uniform thickness and exceptional flatness were prepared, where the nanoparticles exhibited uniform dispersion. It is shown that this technology also helps reducing the degree of pollution of the electron microscope by the magnetic nanoparticles under different electron beam irradiation intensities. Generally, the magnetic nanoparticles are more resistant to electron beam bombardment when embedded into a resin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call