Abstract

Developing highly selective, cycle reliable, and moisture resistant adsorbents is of great importance for gas separation. It is very challenging to control and optimize pore sizes within the ultramicroporous ranges (<0.7 nm), especially for biomass-derived carbons. Moreover, porous carbons featured with random micropore sizes usually exhibited inferior gas separation performances. Herein, we developed an in-situ ionic activation method, in which the chemically bonded K+ ions that are uniformly distributed in the carbon precursor are able to create ultramicroporous carbons with uniform and narrow pore size distributions. Thus, the obtained carbons exhibited high CO2 uptakes (4.17 mmol g−1) and selectivities (333.2 and 34.9) for CO2/N2 (15v/85v) and CO2/CH4 (40v/60v) separation at ambient conditions. The dynamic breakthrough experiments clearly demonstrate their superior and applicable gas-mixture separation performances. Upon the detailed evaluation of vacuum swing adsorption (VSA) working parameters, a record-high adsorbent selective parameter (S) of 1906.4 is obtained. Hence, the in-situ ionic activation approach is an effective method for preparing ultramicroporous carbons with narrow and uniform pore size distributions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.