Abstract

AbstractThe adsorptive separation of CH4 from low‐grade coal‐bed gas can be performed at decentralized and remote coal mines, and it uses more energy‐ and is cost‐efficient than the traditional cryogenic distillation process. Herein, we present a facile method to prepare ultramicroporous carbon granules with a narrow pore‐size distribution at 0.5–0.6 nm. To our knowledge, such centered and uniform pore‐size distribution in carbon granules has never been reported. The carbon granules can be directly utilized in adsorption columns without a granulation or pelletization process. The granular oil‐tea‐shell‐derived porous carbon (GOC‐2) exhibited a record‐high CH4 uptake of 1.82 mmol/g and CH4/N2 selectivity of 5.8 at 1.0 bar and 298 K among carbon granules. The excellent CH4/N2 separation performances were confirmed from the results of dynamic breakthrough experiments and pressure swing adsorption simulations. This work provides a novel strategy for developing ultramicroporous carbon granules and guides the future design of efficient CH4/N2 separation adsorbents.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.