Abstract
We interpret the reciprocation process in K [ [ x ] ] as a fixed point problem related to contractive functions for certain adequate ultrametric spaces. This allows us to give a dynamical interpretation of certain arithmetical triangles introduced herein. Later we recognize, as a special case of our construction, the so-called Riordan group which is a device used in combinatorics. In this manner we give a new and alternative way to construct the proper Riordan arrays. Our point of view allows us to give a natural metric on the Riordan group turning this group into a topological group. This construction allows us to recognize a countable descending chain of normal subgroups.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.