Abstract

We perform an accurate test of ultrametricity in the aging dynamics of the three-dimensional Edwards-Anderson spin glass. Our method consists in considering the evolution in parallel of two identical systems constrained to have fixed overlap. This turns out to be a particularly efficient way to study the geometrical relations between configurations at distant large times. Our findings strongly hint towards dynamical ultrametricity in spin glasses, while this is absent in simpler aging systems with domain growth dynamics. A recently developed theory of linear response in glassy systems allows us to infer that dynamical ultrametricity implies the same property at the level of equilibrium states.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.