Abstract

The free energy of the transition state (TS) between two nodes of an ergodic Markov state model (MSM) can be obtained from the minimum cut, which is the set of edges that has the smallest sum of the flow capacities among all the possible cuts separating the two nodes. Here, we first show that the free energy of the TS is an ultrametric distance. The ultrametric property offers a way to simplify the MSM in a small number of states and, as a consequence, meaningful rate constants (free energy barriers) for the simplified MSM can be defined. We also present a new definition of the cut-based free energy profile (cbFEP), which is useful to check for the existence of a state for which the equilibration is much faster than the time to escape from it. From our analysis, a parallelism emerges between the minimum cut (maximum flow), and transition state theory (TST) or Kramers' theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.