Abstract

Efficient, low threshold, and compact semiconductor laser sources are being investigated for many applications in high-speed communications, information processing, and optical interconnects. The best edge-emitting and vertical cavity surface-emitting lasers (VCSELs) have thresholds on the order of 100 \muA[1,2] but dissipate too much power to be practical for many applications, particularly optical interconnects[3]. Optically pumped photonic crystal (PC) nanocavity lasers represent the state of the art in low-threshold lasers[4,5]; however, in order to be practical, techniques to electrically pump these structures must be developed. Here we demonstrate a quantum dot photonic crystal nanocavity laser in gallium arsenide pumped by a lateral p-i-n junction formed by ion implantation. Continuous wave lasing is observed at temperatures up to 150 K. Thresholds of only 181 nA at 50 K and 287 nA at 150 K are observed - the lowest thresholds ever observed in any type of electrically pumped laser.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call