Abstract

Abstract In the field of low temperature co-fired ceramic (LTCC), it remains a challenge to design the performance of LTCC with low permittivity less than 5. Here, a novel glass mixture of K-Al-B-Si-O (KABS) and Zn-B-Si-O (ZBS) is introduced as a sintering aid of alumina to obtain ultralow-permittivity glass/Al2O3 composite. Meanwhile, the factors of glass mixture component on microstructure, phase structure and dielectric properties of the composites are considered systematically. The crystal structure measured by X-ray diffraction (XRD) shows that pure crystalline phase of ZnAl2O4 spinel can be attained by tailoring the component of the glass mixture. In case of mass ratio of KABS: ZBS equal to 6:4, it favors to efficiently increase the sintering densification of composite, and significantly benefit the low dielectric loss, good mechanical and thermal performances. In detail, the optimal glass/ceramic composites sintered at 850 °C for 2 h exhibit the bulk density of 2.89 g/cm3, er of 4.92 at 14 GHz and Q × f of 6873 GHZ, flexural strength of 202 MPa, thermal expansion coefficient of 5.5 ppm/°C. The above study provides an effective approach for preparing the novel composites as a promising candidate for LTCC applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.