Abstract
Nonlinear multiphoton absorption (MPA) upconversion lasers have critical applications in fluorescence imaging probes and biological photonics. Here, we report the realization of ultralow-threshold six-photon-excited upconversion lasing through cavity quantum electrodynamics effects in a plasmonic microcavity. The value of the Purcell factor (Fp) in hybrid whisper-gallery mode (WGM) is enhanced five-fold relative to a bare microwire (MW), which enhances the nonlinear light-matter interactions dramatically. Compared with a MW, the threshold of six-photon upconversion WGM lasing is reduced by one order magnitude due to plasmonic enhancement effects. In addition, the temperature and polarization characteristics of upconversion lasing via a plasmonic-WGM approach show a distinct evolution, different from a bare MW. This work paves the way for extreme nonlinear optics, taking advantage of the processability and high Purcell factor of plasmonic microcavities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.