Abstract

The development of colloidal quantum dot (QD) lasers is blocked by Auger recombination (AR). Here, phase-pure wurtzite CdSe/CdS core/shell QDs with controlled shell thickness are reported, which possess nearly defect-free core/shell interfaces. Benefiting from increased volume, electron-hole partial spatial separation, and nearly defect-free alloyed interface, this series of QDs exhibit a greater than 3 orders of magnitude decrease in AR rates with increasing shell thickness. Consequently, the amplified spontaneous emission threshold of the QDs with an 11 monolayer CdS shell is found to reach a minimum of 16 μJ cm-2. A record long lifetime (>1000 ps) and extraordinarily large bandwidth (>170 nm) of optical gain are observed by employing ultrafast transient absorption spectroscopy. We leverage the low-threshold gain of the QDs to fabricate microlasers that display single-mode operation and an ultralow threshold of ∼2 μJ cm-2. Our results represent a valuable step toward practical QD lasers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.