Abstract

The noncentrosymmetric superconductor CaPtAs with time-reversal symmetry breaking in its superconducting state was previously proposed to host nodal superconductivity. Here, by employing ultralow-temperature thermal conductivity measurement on CaPtAs single crystal, we study its superconducting gap structure. A negligible residual linear term of thermal conductivity (κ 0/T) in zero magnetic field and the field dependence of κ 0/T indicate that CaPtAs has multiple superconducting gaps with a dominant s-wave component. This is consistent with recent nuclear quadrupole resonance measurements on CaPtAs. Our work puts a strong constraint on the theories to describe the superconducting pairing symmetry of CaPtAs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.