Abstract
The operation of engines using rapeseed methyl ester (RME) and ultralow sulfur diesel (ULSD) was tested for the combustion properties, emitted regulated, unregulated exhaust pollutants, and the size of nanoparticles. The combustion analysis showed higher apparent heat release rate and shorter ignition delay period during RME combustion than during ULSD combustion. The ULSD engine has a combustion chamber maximum pressure relatively higher than that of RME. This study showed that the heat release rate of ULSD is always higher than that of RME while more fuel consumption occurred from the combustion of biodiesel in comparison with diesel. When the engine is running on RME, HC and NOx formation increased at high loads up to 15% and 13%, respectively; meanwhile, CO concentrations reduced by 30.9% for the same conditions. Most of the particulate matter (PM) emitted from a diesel engine has a particle size from 5 to 100 nm, while the particle size from ULSD ranged from 5 to 40 nm. Overloading the engine caused a decrease in the sizes of emitted PM for both fuels. The smoke number for RME was less than that for ULSD by 33.9% at high loads. For high engine load, the cumulative concentration number for the nucleation mode decreased, while it increased for the accumulation mode. Furthermore, measurements of formaldehyde, ethane, methane, acetylene, ethylene, propylene, and isocyanic acid emissions showed the presence of these harmful substances at very low concentrations (8 ppm) for both fuels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.