Abstract
The emergence of complementary metal-oxide semiconductor (CMOS)-compatible HfO2-based ferroelectric materials provides a promising way to achieve ferroelectric field-effect transistors (FeFETs) with a steep subthreshold swing (SS) reduced to below the Boltzmann thermodynamics limit (∼60 mV/dec at room temperature), which has important implications for lowering power consumption. In this work, a metal-oxide-semiconductor field-effect transistor (MOSFET) is connected with Hf0.5Zr0.5O2 (HZO)-based ferroelectric capacitors with different capacitances. By adjusting the capacitance of ferroelectric capacitors, an ultralow SS of ∼0.34 mV/dec in HfO2-based FeFETs can be achieved. More interestingly, by designing the sweeping voltage sequences, the SS can be adjusted to be 0 mV/dec with the drain current ranging over six orders of magnitude, and the threshold voltage for turning on the MOSFET can be further reduced. The manipulated SS could be attributed to the evolution of ferroelectric switching. Our work contributes to understanding the origin of ultralow SS in ferroelectric MOSFETs and the realization of low-power devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.