Abstract

Low resistance n+GaN contact materials were experimentally studied for GaN HEMT applications by selective area epitaxy regrowth on a patterned SiC substrate. Epitaxy was performed by metal organic chemical vapor deposition using 100% H2 or 100% N2 as the carrier gas. Thin film characterization demonstrated that n+GaN grown in N2 carrier gas has a superior morphology with improved crystalline quality to that grown in H2 carrier gas. The results also indicated that the surface morphology of n+GaN grown in N2 carrier gas is less sensitive to mask pattern density and micro-loading effects with Si doping concentrations up to 1 × 1020/cm3. Secondary ion mass spectrometry analysis shows that C and O impurity levels in n+GaN are one order of magnitude lower with N2 carrier gas than with H2. The electrical measurement of transmission line model structures shows an n+GaN sheet resistance of 15 Ω/sq and an Ohmic metal to n+GaN contact resistance of 0.02 Ω-mm for structures grown in N2 carrier gas. These values represent 7.1× and 2.5× improvements compared to H2 carrier gas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.