Abstract
Ultralow Pt-loading Au nanoflowers (AuNFs) were synthesized on a glassy carbon electrode surface by the underpotential deposition (UPD) monolayer redox replacement technique, which involves redox replacement of a copper UPD monolayer by PtCl42− that can be reduced and deposited simultaneously. Field-emission scanning electron microscopy, energy dispersive spectroscopy, x-ray photoelectron spectroscopy and the electrochemical method were utilized to characterize the ultralow Pt-loading AuNFs. Cyclic voltammogram results showed that the ultralow Pt-loading AuNFs exhibited excellent electrocatalytic activity towards the reduction of hydrogen peroxide and the oxidation of glucose in neutral media, and the reaction pathway of glucose oxidation was changed from an intermediate process based on the electrosorption of glucose to a direct oxidation process. From chronoamperometric results, it could be obtained that this prepared biosensor had wide linear ranges and very low detection limits (DLs) for H2O2 (0.025–94.3 μM; DL = 0.006 μM) and glucose (0.0028–8.0 mM; DL = 0.8 μM), which were much better than previous results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.