Abstract

Using novel stacked covalent-bond-dielectric GeO <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">x</i> (GeO) on metal-oxide SrTiO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> to form a cost-effective Ni/GeO/SrTiO/TaN resistive switching memory, an ultralow set power of small 4 μW (3.5 μA at 1.1 V), a reset power of 16 pW (0.12 nA at 0.13 V), and a large 10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">6</sup> memory window for 10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">5</sup> -s retention at 85 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">°</sup> C are realized for the first time. A positive temperature coefficient is measured at low-resistance state and different from the metallic filament in metal-oxide resistive random access memory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.