Abstract

This work presents the design and characterization of an ultralow-power core chip for electronically scanned arrays at <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$X$ </tex-math></inline-formula> -band, implemented in 0.25-/0.5- <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${\mu }\text{m}$ </tex-math></inline-formula> E-/D-mode gallium arsenide (GaAs) pHEMT technology. In particular, design details are given about the two core functional blocks embedded in the microwave monolithic integrated circuit (MMIC): a 12-bit phase and amplitude control circuit and an 18-bit serial-to-parallel (S2P) interface. The S2P interface was designed resorting to a custom symmetric device model, expressly conceived for the time-domain simulations required for digital circuits. Due to the adoption of a differential structure with resistive pull-ups, it achieves a state-of-the-art power consumption of 2.2 mW/bit and nearly 87% yield. The analog circuit includes a 6-bit phase shifter (PS) and a 6-bit attenuator. To mitigate risks, two different PS architectures have been developed and are compared in this work, discussing advantages and drawbacks of the different solutions. Since the two designs share the same target specifications, a truly fair comparison can be made not only in terms of performance but also concerning robustness and repeatability, thus providing useful guidelines for the selection of the most appropriate strategy. In particular, it is shown that one architecture outperforms the other by about 2 dB and 1.5° in terms of insertion loss and rms phase error, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call