Abstract

Graphene shows strong promise for the detection of terahertz (THz) radiation due to its high carrier mobility, compatibility with on-chip waveguides and transistors, and small heat capacitance. At the same time, weak reaction of graphene's physical properties on the detected radiation can be traced down to the absence of a band gap. Here, we study the effect of electrically induced band gap on THz detection in graphene bilayer with split-gate p-n junction. We show that gap induction leads to a simultaneous increase in current and voltage responsivities. At operating temperatures of ∼25 K, the responsivity at a 20 meV band gap is from 3 to 20 times larger than that in the gapless state. The maximum voltage responsivity of our devices at 0.13 THz illumination exceeds 50 kV/W, while the noise equivalent power falls down to 36 fW/Hz1/2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.