Abstract

In this study, ultralow 1/f noise organic thin-film transistors (OTFTs) based on parylene gate dielectrics modified with triptycene (Trip) modifiers were fabricated. The fabricated OTFTs showed the lowest 1/f noise level among those of previously reported OTFTs. It is well known that 1/f noise causes degradation of signal integrity in analog and digital circuits. However, conventional OTFTs still possess high 1/f noise levels, and the factors that strongly affect 1/f noise are still ambiguous. In this work, the effect of gate dielectric surface on 1/f noise was investigated. First, by comparing OTFTs composed of various channel lengths, we revealed that contact resistance did not affect 1/f noise. Second, we compared parylene OTFTs with and without a self-assembled Trip modifier layer in terms of 1/f noise and trap density of states (Trap DOS). The experiments revealed that a specific Trip modifier layer suppresses the shallow Trap DOS in the OTFTs, leading to a low 1/f noise. Moreover, the 1/f noise level and Trap DOS of various kinds of OTFTs were comprehensively compared, which highlighted that the 1/f noise of OTFTs strongly depends on the gate dielectric surface. Finally, detailed analysis of the gate dielectric interface led us to conclude that the disorder of gate dielectrics and the crystalline quality of semiconductor films are related to shallow Trap DOS, which correlates with 1/f noise.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.