Abstract

The atomically precise doping of silicon with phosphorus (Si:P) using scanning tunneling microscopy (STM) promises ultimate miniaturization of field effect transistors. The one-dimensional (1D) Si:P nanowires are of particular interest, retaining exceptional conductivity down to the atomic scale, and are predicted as interconnects for a scalable silicon-based quantum computer. Here, we show that ultrathin Si:P nanowires form one of the most-stable electrical conductors, with the phenomenological Hooge parameter of low-frequency noise being as low as ≈10(-8) at 4.2 K, nearly 3 orders of magnitude lower than even carbon-nanotube-based 1D conductors. A in-built isolation from the surface charge fluctuations due to encapsulation of the wires within the epitaxial Si matrix is the dominant cause for the observed suppression of noise. Apart from quantum information technology, our results confirm the promising prospects for precision-doped Si:P structures in atomic-scale circuitry for the 11 nm technology node and beyond.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.