Abstract

Multilayer-structured nanocomposites are recognized as a prominent strategy for overcoming the paradox between the breakdown strength (Eb) and polarization (P) to achieve superior energy storage performance. However, current multilayer-structured nanocomposites involving substantial quantities of nanofillers (>10vol.%) for high dielectric constant as polarization layer will inevitably deteriorate mechanical properties and breakdown strength. Herein, an innovative approach is reported to breaking conventional rules by designing a multilayered polymer composite with ultralow loading of Al2O3 nanoparticles, i.e., 0.3vol.% for polarization layers and 2vol.% for insulation layers. By modulating the spatial distribution of Al2O3 nanoparticles in polymer, a significantly increased interfacial dipole response is induced, and deep interfacial traps are constructed to capture the mobile charges, thereby suppressing high-temperature conduction loss. The resulting multilayered polymer composite exhibits an unparalleled discharged energy density of 7.8 Jcm-3 with a charging/discharging efficiency exceeding 90% at 150°C. This work provides valuable insights into achieving superior capacitive performance in multilayer composite films operating under extreme conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.