Abstract

This paper describes a set of ultra-low smoke emission monitoring optical devices based on differential absorption spectroscopy (DOAS), which mainly includes a xenon lamp source, a sample cell, a spectrometer for light detection, and a Y-type optical fiber. The device utilizes a newly developed ultraviolet long path gas chamber, the energy of the ultraviolet spectrum is high, and the energy of the xenon lamp in the experiment is only enough to meet the application requirements. As well, based on DOAS optical device it has the advantages of high ultraviolet energy, small volume and high measurement accuracy. Therefore, the system solves the difficult problem of low concentration flue gas emission monitoring. The lower limit of detection of SO2, NO and NO2 concentration was 0.21 mg/m3, 0.13 mg/m3 and 0.61 mg/m3, respectively. Comparison of on-site field monitoring with high temperature FTIR (Fourier Transform Infrared Spectroscopy) flue gas emission monitor, the average concentrations of SO2, NO and NO2 measured by the two instruments were less than 14 mg/m3, 39 mg/m3 and 25 mg/m3 respectively, and the correlations were all above 0.995.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.