Abstract

Magnetic refrigeration around the liquid-helium temperature plays a critical role in many technological sectors. Even if gallium gadolinium garnet (GGG) has been regarded as the benchmark, its application is highly limited by the small magnetic entropy changes, the requirement of superconducting magnets, and the large device sizes. Here, we report that LiREF4 (RE = rare earth) single crystals exhibit significantly superior magnetocaloric performance levels to commercial GGG. Under a small magnetic field of 5 kOe, which can be easily achieved by a permanent magnet, the magnetic entropy change reaches a record-high value of 16.7 J kg−1 K−1 in LiHoF4 in contrast to the value of 1.0 J kg−1 K−1 in GGG. The combination of small driving fields, large entropy changes, and excellent thermal and/or magnetic reversibility enables this series to be employed as the ideal working material for compact magnetic refrigeration around the liquid-helium temperature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.