Abstract
Control of magnetic anisotropy in thin films with perpendicular magnetic anisotropy is of paramount importance for the development of spintronics with ultralow-energy consumption and high density. Traditional magnetoelectric heterostructures utilized the synergistic effect of piezoelectricity and magnetostriction to realize the electric field control of magnetic anisotropy, resulting in additional fabrication and modulation processes and a complicated device architecture. Here, we have systematically investigated the electric current tuning of the magnetic properties of the metallic NiCo2O4 film with intrinsic perpendicular magnetic anisotropy. Ferrimagnetic-to-paramagnetic phase transition has been induced through Joule heating, resulting in a rapid decrease of both magnetic coercivity and moment. An ultralow current density of 2.5 × 104 A/cm2, which is 2 to 3 orders magnitude lower than that of conventional spin transfer torque devices, has been verified to be effective for the control of the magnetic anisotropy of NiCo2O4. Successful triggering of magnetic switching has been realized through the application of a current pulse. These findings provide new perspectives toward the electric control of magnetic anisotropy and design of spintronics with an ultralow driving current density.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.