Abstract

Low-dielectric-constant materials such as silicon dioxide serving as interconnect insulators in current integrated circuit face a great challenge due to their relatively high dielectric constant of ≈4, twice that of the recommended value by the International Roadmap for Devices and Systems, causing severe parasitic capacitance and associated response delay. Here, novel atomic layers of amorphous carbon nitride (a-CN) are prepared via a topological conversion of MXene-Ti3 CNTx under bromine vapor. Remarkably, the assembled a-CN film exhibits an ultralow dielectric constant of 1.69 at 100 kHz, much lower than the previously reported dielectric materials such as amorphous carbon (2.2) and fluorinated-doped SiO2 (3.6), ascribed to the low density of 0.55g cm-3 and high sp3 C level of 35.7%. Moreover, the a-CN film has a breakdown strength of 5.6 MVcm-1 , showing great potential in integrated circuit application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.