Abstract
Halide perovskites are promising candidates for soft X-ray detection (<80 keV) owing to their high X-ray absorption coefficient, resistivity, and mobility lifetime product. However, the lack of large high-quality single crystals (SCs) renders it challenging to manufacture robust hard X-ray imaging systems (>100 keV) with a low detection limit and stable dark current. Herein, high-quality inch-size two-dimensional (2D) Cs3Bi2Br9 (CBB) single crystals are grown from a melt via the Bridgman method. The crystal quality is enhanced by eliminating inclusions of CsBr-rich phases and restraining the trap-state density, leading to an enhanced resistivity of 1.41 × 1012 Ω cm and a mobility lifetime product of 8.32 × 10-4 cm2 V-1. The Au/CBB/Au single-crystal device exhibits a high sensitivity of 1705 μC Gyair-1 cm-2 in all-inorganic bismuth-based perovskites and an ultralow detection limit of 0.58 nGyair s-1 in all of the bismuth-based perovskites for 120 keV hard X-ray detection. The CBB detector exhibits high work stability with an ultralow dark current drift of 2.8 × 10-10 nA cm-1 s-1 V-1 and long-term air environment reliability under a high electric field of 10 000 V cm-1 owing to the ultrahigh ionic activation energy of the 2D structure. The proposed robust imaging system based on CBB SC is a promising tool for X-ray medical imaging and diagnostics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.