Abstract

A completely amorphous polyimide (PI) derived from 2,3,3′,4 ′-biphenyltetracarboxylic dianhydride (a-BPDA) with 4,4′ -oxydianiline (4,4′-ODA) (i.e. a-BPDA/ODA) was used as a matrix polymer for a rod-like polyimide structure derived from pyromellitic dianhydride (PMDA) with p-phenylenediamine (PDA) (i.e. PMDA/PDA) to improve the toughness without sacrificing its ultra-low coefficient of thermal expansion (CTE) characteristics. A matrix effect of a-BPDA/ODA was investigated by comparing with an isomer PI system, s-BPDA/ODA (s-BPDA: 3,3′,4,4′-biphenyltetracarboxylic dianhydride). Neither of the PMDA/PDA-based blend systems with a minor fraction of these flexible PIs showed any distinct glass transitions during dynamic mechanical thermal analysis. The unique fluorescence behavior of perylenetetracarboxydiimide (PEDI), which became almost non-fluorescent by intimate intermolecular contact with the PMDA/PDA chains, was applied to study the miscibility of the PMDA/PDA-based blend systems. For this purpose, a- and s-BPDA/ODA was labeled by copolymerization using a trace amount of difunctional PEDI. The results revealed that the a-BPDA/ODA-containing blend system was miscible over the entire blend composition whereas the s-BPDA/ODA-containing counterpart was essentially immiscible. The a-BPDA/ODA was much more effective as a flexible component than s-BPDA/ODA for reducing the crystallinity of PMDA/PDA and, as a result, significantly improved the film toughness. Blending of only small amounts of a-BPDA/ODA (5—10 wt.%) into PMDA/PDA caused an unexpected further decrease in the ultra-low CTE (2.8 ppm/K) of homo PMDA/PDA film. A mechanism is proposed to reasonably explain the results obtained in the present study. The blend system composed of PMDA/PDA (90 wt/%) and a-BPDA/ODA (10 wt.%) achieved an ultra-low CTE of 0.9 ppm K—1 in addition to sufficient film flexibility.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call