Abstract

Ultra-long-haul 42.7-Gbit/s-based dense wavelength-division multiplexing (DWDM) transmission using optically prefiltered carrier-suppressed return-to-zero (CS-RZ) signal has been experimentally investigated. First, we have numerically and experimentally evaluated the impact of 3-dB bandwidth and filter detuning of bandlimiting filters on the 42.7-Gbit/s CS-RZ signal in back-to-back condition. We found that the asymmetrically filtered CS-RZ signal had a great potential for ultra-DWDM applications. Next, we have numerically and experimentally investigated the basic transmission characteristics of a 45-GHz-wide prefiltered CS-RZ signal, such as the robustness against residual dispersion, nonlinear effects, and PMD, and have confirmed that the prefiltered CS-RZ signal had less tolerance against fiber nonlinearity than an unfiltered CS-RZ signal. Finally, we have experimentally investigated the optimum filtering condition for 65- or 45-GHz-wide prefiltered CS-RZ signals in the ultra-long-haul DWDM transmission and have conducted the 70- and 50-GHz spaced 32 /spl times/ 42.7Gbit/s transmission using prefiltered CS-RZ signals. Through these experiments, we have confirmed the effectiveness of prefiltered CS-RZ signal ultra-long-haul DWDM transmission.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.