Abstract

Long ZnO nanowire arrays (> or = 10 microm) were fabricated using the hydrothermal method and the refresh process of the reactant solution. The diameter of the synthesized nanowires was controlled by varying the solution concentration of the seed layers, without reducing their length. The maximum temperature in this process was 95 degrees C and the repeated refresh process at 95 degrees C provided the driving force for the growth of ultralong nanowires by exchanging the reactants. Interestingly, the diameter of the refreshed ZnO nanowires strongly depended on the solution temperature during refresh. The exchange of the reactant solution at the same temperature as the synthesis temperature induced the synthesis of ultralong nanowires and the length of the resultant nanowires can be controlled by varying the repetition number. The illumination of the ultraviolet light induced considerably enhanced current flow in the ultralong nanowires from mid 10(-10) to 10(-7) A at 5 V.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call