Abstract
AbstractPolymer‐based room‐temperature‐phosphorescent (RTP) materials are attractive alternatives to low‐molecular‐weight organic RTP compounds because they can form self‐standing transparent films with high thermal stability. However, their RTP lifetimes in air are usually short (<≈0.4 s). Here, the simple organic amorphous polymer, poly(styrene sulfonic acid) (PSS), exhibits an ultralong RTP lifetime in air when desiccated. The maximum lifetime is 1.22 s, which is three times that of previously reported RTP amorphous organic polymers. The lifetime can be controlled by the PSS molecular weight and by the ratio of sulfonic acid groups introduced into the polymer. The dry polymers should enable unprecedented molecular engineering in organic molecule‐based optoelectronic devices because of the self‐standing and thermal stability attributes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.