Abstract

Interatomic Coulombic decay is a recently discovered ionization process by which energy absorbed from incident radiation by one atom is rapidly transferred to another. A study of this process in helium now shows that it can operate over remarkably long distances of more than 45 atomic radii. When an atom is electronically excited, it relaxes by emitting a photon or an electron. These carry essential information on the electronic structure of their emitter. However, if an atom is embedded in a chemical environment, another ultrafast non-radiative decay process called interatomic Coulombic decay (ICD) can become operative1. As ICD occurs only in the presence of neighbours, it is highly sensitive to that environment. Therefore, it has the potential to become a powerful spectroscopic method to probe the close environment of a system. ICD has been observed experimentally in van der Waals clusters2,3,4,5 as well as in hydrogen-bonded systems6,7,8. A key feature of ICD is that the excited atom can transfer its excess energy to its neighbours over large distances. The giant extremely weakly bound helium dimer is a perfect candidate to investigate how far two atoms can exchange energy. We report here that the two helium atoms within the dimer can exchange energy by ICD over distances of more than 45 times their atomic radius. Moreover, we demonstrate that ICD spectroscopy can be used for imaging vibrational wavefunctions of the ionized–excited helium dimer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.