Abstract

Confocal microscopy is regularly used in cellular research but unfortunately, the imaging is restricted to a single plane. Chromatic confocal microscopy (CCM) offers the possibility to image multiple planes simultaneously, thus providing a manifold increase in the imaging speed, whereas eliminating the need for z‐axis scanning. Standard chromatic confocal systems have a limited imaging range of the order of a few hundreds of micrometers which limits their applications. Herein, using a single zinc selenide lens, a CCM system that has an imaging range of 18 mm (±68 nm) with an average spatial resolution of 2.46 μm (±44 nm) and another system with a 1.55 mm (±14 nm) imaging range with 0.86 μm (±30 nm) average lateral spatial resolution is demonstrated. In doing so, sevenfold increase in the imaging range for the system with 1.55 mm imaging when compared with previously reported systems with similar lateral spatial resolution is achieved. The proposed approach can be a powerful tool for confocal imaging of biological samples or surface profiling of industrial samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call