Abstract

We have investigated electrochemical sensing properties of electrodes fabricated with ultralong aligned multi-walled carbon nanotube (MWNT) bundles synthesized using water-assisted chemical vapor deposition on aluminum (Al) and iron (Fe) coated silicon wafer with ethylene and argon/hydrogen gas as carbon source and buffer gas respectively. Cyclic voltammograms performed on these electrodes show diffusion-controlled-reversible reaction. The dominance of radial diffusion mass transport at these electrodes was also indicated by sigmoidal-shaped voltammograms obtained at various scan rates. These electrodes were able to sense very low concentration of ascorbic acid (approximately 0.7 microM) and dopamine (approximately 1.87 microM), two model species often used in electro-analysis. The excellent electrochemical properties along with good single species detection ability suggest that these MWNTs are promising electrode materials for developing very sensitive chemical and/or biological sensors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call