Abstract

Light trapping is a useful approach for increasing the absorption of thin film photovoltaic (PV) cells. Simple light trapping can be achieved by incorporating a scattering layer on the top and bottom surface of cells and can increase absorption by a factor of 4n <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> . Recently, ultralight trapping using Rugate and 1-D photonic bandgap filters have been proposed to increase light trapping by a factor of 4n <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> /sin <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> θ, where θ is half of the acceptance angle. In this paper, we present the design of a holographic ultralight trapping filter. The holographic filter can be implemented in large areas at a low cost, which makes it scalable for PV applications. A design is presented that increases the optical path length for near bandgap wavelengths in a thin-film silicon PV cell. The optical path length enhancement is converted to electrical output using the PC-1D simulation software. The short-circuit current for a 10-μm-thick silicon PV cell increases by nearly 14.7% relative to a cell without light trapping.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call