Abstract
The high-efficiency utilization of two-dimensional (2D) graphene layers for developing durable multifunctional electromagnetic wave (EMW) absorbing aerogels is highly demanded yet remains challenging. Here, renewable, low-density, high-strength, and large-aspect-ratio ceramic silicon dioxide (SiO2) nanofibers were efficiently prepared to assist in the preparation of ultralight yet robust, highly elastic, and hydrophobic graphene aerogels using facile, scalable freeze-drying followed by a carbonization approach. The ceramic nanofibers efficiently prevent the agglomeration of graphene and enhance interfacial interactions, significantly promoting mechanical strength. In addition to the high conduction loss capability derived from the interconnected graphene network, high interfacial polarization derived by abundant heterogeneous interfaces is accomplished for the three-dimensional (3D) hybrid aerogels. The hybrid aerogels thus showcase excellent EMW absorption performance, involving a minimum reflection loss of -74.5 dB at 1.8 mm and an effective absorption bandwidth of 5.7 GHz, comparable to those of the best EMW absorbers. Furthermore, the integration of one-dimensional SiO2 and 2D graphene into 3D hybrid aerogels enables remarkable photothermal antibacterial, photothermal oil absorption, and thermal insulation performances. This work thus provides a type of ultralight ceramic/graphene aerogel with a high-efficiency utilization of graphene for accomplishing high-performance multifunctional applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.