Abstract
AbstractDeveloping tunable and highly efficient electromagnetic wave (EMW) absorbers with low density is crucial for the development of wireless telecommunications devices in extreme conditions. SiC ceramic has received much attention because of its dielectric tenability, low density, and chemical stability. However, the present SiC‐based materials usually show limited EMW absorbing performance than they are expected. Herein, an ultralight and resilient bicontinuous Si3N4/SiC network (8 mg cm−3) composed of EMW‐transparent Si3N4 microbelts and EMW‐absorption SiC nanowires is designed and prepared to achieve improved impedance matching and EMW attenuation capacity. The optimized bicontinuous network exhibits a broad effective absorption bandwidth of 8.62 GHz and a strong RLmin of −52.31 dB. Furthermore, the resulting bicontinuous Si3N4/SiC network, with thickness of 6 mm, shows a tunable absorption bandwidth ranging from 5.36 to 18 GHz by resilient action. It also exhibits excellent thermal stability (up to 1000 °C), thermal shock resistance (from −196 to 900 °C), and thermal insulation performance (32 Mw m−1 K−1), enabling it to be an ideal candidate for EMW absorption in extreme environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.