Abstract

The local field enhancement in plasmonic nanostructures is vital for surface enhanced Raman scattering (SERS). However, it remains a challenge to achieve a large local field enhancement at an illumination wavelength in the green waveband. Here we report on an ultra-large local field enhancement effect of isolated thick triangular silver nanoplates (ITTSNPs) on a silicon substrate at an illumination wavelength in the green waveband. We show that when the thickness of the ITTSNP is larger than a critical thickness depending on the illumination wavelength, a large local field enhancement with an enhancement factor (EF) greater than 350 can be achieved at an illumination wavelength in the green waveband, which is due to the excitation of strong localized surface plasmon polaritons only at three top apexes of the ITTSNP. Furthermore, we experimentally demonstrate that at an excitation wavelength of 514.5 nm, the average SERS EF of the ITTSNPs can exceed ${{10}^{11}}$1011, and the sensitivity for the detection of Rhodamine 6 G molecules can reach ${{10}^{ - 12}}\;{\rm M}$10-12M.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call