Abstract

Thermal management problems are now critical in microelectronic and optoelectronic packaging. In response to the serious limitations of traditional packaging materials, material suppliers are developing an increasing number of new thermal management materials with low coefficients of thermal expansion (CTEs), ultrahigh thermal conductivities (CT), and low densities. There are now 15 low-CTE materials with CT between that of copper (400 W/m-K) and four times that of copper (1600 W/m-K), several of which are being used in production applications. Thermally conductive carbon fibers are being used to reduce the CTEs and increase the CT of printed circuit boards. These materials greatly expand the options of the packaging engineer, making it possible to eliminate heat pipes and fans. This paper provides an overview of the state of the art of advanced packaging materials, including their key properties, state of maturity, applications, manufacturing, cost and lessons learned. We also look at likely future directions, including nanocomposites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.