Abstract

Porous ceramics possess great application potential in various fields. However, the contradiction between their pores and their strength have significantly hampered their applications. In this study, we present a simple directional solidification process that relies on its in situ pore forming mechanism to fabricate Al2O3/Y3Al5O12/ZrO2 porous eutectic ceramic composites with a highly dense and nanostructured eutectic skeleton matrix and a lotus-type porous structure. The flexural strength of this porous ceramic composite with a porosity of 34% is 497 MPa at ambient temperature, which is a new record of the strength of all current porous ceramics. This strength can remain at 324 MPa when the temperature increases up to 1773 K because of its refined lamellar structure and strong bonding interface. We demonstrate an interesting application of the directional solidification in efficiently preparing the ultrahigh-strength porous ceramic with high purity. The findings will open a window to the strength of porous ceramics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.