Abstract

Key components and architecture options are being actively investigated to realize next generation transport technology in optical networks. Serial transmission systems using a single wavelength have, so far, provided cost effective solutions and therefore remain desirable. For 100 Gbit/s Ethernet, this option will, however, depend on the availability of the electronic and optical components. Due to its high speed and high breakdown voltage, the InP double-heterojunction bipolar transistor (DHBT) technology is particularly suited for signal processing and high-speed communication systems. This contribution describes our InP DHBT based integrated circuit (IC) technology developed for 100 Gbit/s class mixed-signal ICs. Using this technology, we fabricated and succeeded in 112 Gbit/s testing of key electronic components, including a multiplexer (MUX), a distributed amplifier, and an integrated clock and data recovery (CDR)/1:2 demultiplexer (DEMUX), with very clear eye waveforms. These high-speed building block ICs are described and the main results are presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.