Abstract

X-ray microscopic analysis as a fundamental tool in various scientific fields is supported by advancements in highprecision x-ray optics. Off-axis ellipsoidal focusing mirror optics, which can produce two-dimensional focus with a mirror and has characteristics of high reflectivity and achromaticity, is quite attractive for use in microscopic analysis. However, technical problems in fabrication prevent a realization of off-axis ellipsoidal mirrors with nanometer accuracy for nano-focusing of hard x-rays. The purpose of this study was to resolve a problem of surface processing technique for fabrication of nanofocusing ellipsoidal mirrors in the hard x-ray region. We developed two types of ultra-high-precision surface processing machines by advancing the Elastic Emission Machining method. One is a machine for improvement of surface roughness with a rotary type working head, and the other is a machine for a computer-controlled figure correction with a small-aperture nozzle type working head. Using the rotary type machine, we confirmed that surface roughness of 4.32 nm root-mean-square (RMS) on an off-axis ellipsoidal mirror surface was improved to 0.14 nm (RMS) within a spatial wavelength range of shorter than several hundred microns. Using the nozzle type machine, we demonstrated a figure correction in a spatial wavelength of longer than 100 μm with nanometer height accuracy. Ultrahigh- precision surface processing technologies with the capability of fabricating nano-focusing off-axis ellipsoidal mirrors were established.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.