Abstract

We investigate an all-metal and simple-fabrication grating with an ultranarrow band absorption spectrum in the telecom window range. The influences of structure parameters on the absorption characteristics are investigated. For the best design, the absorption efficiency reaches 94% under normal incidence, with the full width at half-maximum of only 0.17 nm. We demonstrate that this ultranarrow band absorption is the result of the dominant excitation of the Rayleigh anomaly mode. The corresponding figure of merit is calculated to be 8530RIU-1. The applied procedure has the potential to also be used in designing high-performance reflection-based sensors in other wavelength ranges.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call