Abstract
Abstract Ultra-high-energy (UHE) cosmic rays (CRs) of energies ∼(1018–1020) eV, accelerated in violent astrophysical environments, interact with cosmic background radiation fields via photo-hadronic processes, leading to strong attenuation. Typically, the Universe would become “opaque” to UHE CRs after several tens of megaparsecs, setting the boundary of the Greisen–Zatsepin–Kuz’min (GZK) horizon. In this work, we investigate the contribution of sources beyond the conventional GZK horizon to the UHE CR flux observed on Earth, when photospallation of the heavy nuclear CRs is taken into account. We demonstrate that this contribution is substantial, despite the strong attenuation of UHE CRs. A significant consequence is the emergence of an isotropic background component in the observed flux of UHE CRs, coexisting with the anisotropic foreground component that is associated with nearby sources. Multi-particle CR horizons, which evolve over redshift, are determined by the CR nuclear composition. Thus, they are dependent on the source populations and source evolutionary histories.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.