Abstract

Existing single image high dynamic range (HDR) reconstruction methods attempt to expand the range of illuminance. They are not effective in generating plausible textures and colors in the reconstructed results, especially for high-density pixels in ultra-high-definition (UHD) images. To address these problems, we propose a new HDR reconstruction network for UHD images by collaboratively learning color and texture details. First, we propose a dual-path network to extract the content and chromatic features at a reduced resolution of the low dynamic range (LDR) input. These two types of features are used to fit bilateral-space affine models for real-time HDR reconstruction. To extract the main data structure of the LDR input, we propose to use 3D Tucker decomposition and reconstruction to prevent pseudo edges and noise amplification in the learned bilateral grid. As a result, the high-quality content and chromatic features can be reconstructed capitalized on guided bilateral upsampling. Finally, we fuse these two full-resolution feature maps into the HDR reconstructed results. Our proposed method can achieve real-time processing for UHD images (about 160 fps). Experimental results demonstrate that the proposed algorithm performs favorably against the state-of-the-art HDR reconstruction approaches on public benchmarks and real-world UHD images.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call