Abstract

Recently, a novel boron monolayer with the “hexagon holes” density of η = 1/8 was repeatedly predicted to be the most stable boron sheet in different literatures. Its fascinating porous characteristic structure and sufficient surface space seem attractive and motivate researchers to perform further investigation about it. Herein, we demonstrated that the Li-decorated 1/8-boron monolayer is a kind of ultrahigh capacity hydrogen storage medium. We also established that Li atoms can be attached above the centers of the hexagonal holes in the novel 1/8-boron monolayer due to the charge transfer from Li atoms to boron atoms, and the electric field induced by the positive charged Li atoms attracts and polarizes the H2 molecules and makes the binding strong enough for potential applications to store H2 molecules but not dissociate them. Detailed calculations showed that the two-sided Li-decorated 1/8-boron monolayer has an ultrahigh hydrogen storage capacity averagely to bind up to four H2 molecules for each Li ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.