Abstract

Tip-enhanced Raman spectroscopy (TERS) provides chemical information about adsorbates with nanoscale spatial resolution, but developments are still required in order to incorporate ultrafast temporal resolution. In this Letter, we demonstrate that a reliable TER signal of rhodamine 6G (R6G) using picosecond (ps)-pulsed excitation can be obtained in ultrahigh vacuum (UHV). In contrast to our previous observation of irreversible signal loss in ambient TERS ( Klingsporn , J. M. ; Sonntag , M. D. ; Seideman , T. ; Van Duyne , R. P. J. Phys. Chem. Lett. 2014 , 5 , 106 - 110 ), we demonstrate that the UHV environment decreases irreversible signal degradation. As a complement to the TERS experiments, we examined the rate of surface-enhanced Raman (SER) signal decay under picosecond irradiation and found that it is also slowed in UHV compared to that in ambient. Signal decay kinetics suggest that the predominant mechanism responsible for signal loss in ps SERS of R6G is surface diffusion. Both diffusive and reactive phenomena can lead to pulsed excitation TER signal loss, and a UHV environment is advantageous in either scenario.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.