Abstract

A surface analysis system has been newly developed with combination of ultrahigh vacuum scanning electron microscope (SEM) and wide-movable scanning tunneling microscope (STM). The basic performance is experimentally demonstrated. These SEM and STM images are clear enough to obtain details of surface structures. The STM unit moves horizontally over several millimeters by sliding motion of PZT actuators. The motion resolution is proved to be submicrometers. The STM tip mounted on another PZT scanner can be guided to a specific object on the sample surface during SEM observation. In the observation of a Si(111) surface rapidly cooled from high temperature, the STM tip was accurately guided to an isolated atomic step and slightly moved along it during SEM observation. The STM observation shows an asymmetry of the (7×7)-transformed region along the step between the upper and lower terraces. (7×7) bands continuously formed along the edge of terraces, while (7×7) domains distributed on the terraces slightly far from the step. These experiments show the wide-movable STM unit resolves a gap of observation area between SEM and STM and the system enables a specific object found in the SEM image to be observed easily by STM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.