Abstract

The effect of (Sc,Ta,Ce) doping on the properties of Bi3TiNbO9 (BTNO)-based ceramics was investigated. The cerium modification greatly improves the piezoelectric activity of Bi3(Ti0.96Sc0.02Ta0.02)NbO9-based ceramics and significantly decreases the dielectric dissipation. The d33 of Bi3Ti0.96Sc0.02Ta0.02NbO9+x wt %CeO2 (x=0.35) was found to be 18 pC/N, the highest value among the BTNO-based ceramics and almost three times as much as the reported d33 values of the pure BTNO ceramics (∼6 pC/N). The modification increased the resistivity ρ of the samples extremely, resolving the low resistivity problem for high temperature applications. The dielectric spectroscopy shows that the TC for all the ceramics is higher than 900 °C. The mechanical quality factor Q and planar coupling factors kp and kt of Bi3Ti0.96Sc0.02Ta0.02NbO9+0.35 wt %CeO2 ceramic were found to be 2835, 9%, and 23%, respectively, and it has high TC and stable piezoelectric properties, demonstrating that the (Sc,Ta,Ce) modified BTNO-based material is a wonderful candidate for high temperature applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.