Abstract

AbstractLithium–sulfur batteries are regarded as the imminent energy storage device for high energy density applications. However, at practical sulfur loadings >5 mg cm−2, the cell suffers from severe capacity fade and durability. In the present work, a hybrid MoS2–WS2 heterodimensional structure is reported. The strain induced growth of transition metal dichalcogenides preferentially exposes edge sites and maximizes the geometric coverage for anchoring‐diffusion‐conversion of polysulfides to restrain the shuttle effect at practical S‐loadings. The systematic analysis (5–50 mg cm−2 of S‐loadings) reveals that the unique cathode architecture exhibits reversible S‐loading tolerance up to 28 mg cm−2. A high initial areal capacity of 32 mAh cm−2 with an area specific energy density of 67 mWh cm−2 is achieved with a low electrolyte volume/S‐loading ratio of 5 mL g−1. The strategy presented here can unlock high S‐loading Li–S cells with extended cyclability and high energy density.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call