Abstract

The main challenge of particle reinforced metal matrix composites (MMCs) is balancing strength and ductility. This research uses type 420 stainless steel and spherical cast tungsten carbide (WC/W2C) with a similar powder size and range as raw powders to manufacture laser powder bed fusion (LPBF) 420 + 5 wt% WC/W2C MMCs. LPBF 420 + 5 wt% WC/W2C MMCs contain austenite, martensite, and W-rich carbides (WC/W2C, FeW3C, M6C, and M7C3) from nanometre to micrometre scale. The well-balanced composition creates a crack-free reaction layer between the reinforced particles and matrix. This reaction layer consists of two distinct layers, depending on the element concentration. The LPBF 420 + 5 wt% WC/W2C MMCs achieved an excellent compressive strength of ∼5.5 GPa and a considerable fracture strain exceeding 50 %. The underlying mechanisms for the improved mechanical properties are discussed, providing further insight to advance the application of MMCs via additive manufacturing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.